Dynamic model of SARS-CoV-2 spike protein reveals potential new vaccine targets

 

by Public Library of Science

via Phys.Org - April 1, 2021

 

A new, detailed model of the surface of the SARS-CoV-2 spike protein reveals previously unknown vulnerabilities that could inform development of vaccines. Mateusz Sikora of the Max Planck Institute of Biophysics in Frankfurt, Germany, and colleagues present these findings in the open-access journal PLOS Computational Biology.

 

SARS-CoV-2 is the virus responsible for the COVID-19 pandemic. A key feature of SARS-CoV-2 is its spike protein, which extends from its surface and enables it to target and infect human cells. Extensive research has resulted in detailed static models of the spike protein, but these models do not capture the flexibility of the spike protein itself nor the movements of protective glycans—chains of sugar molecules—that coat it.

 

To support vaccine development, Sikora and colleagues aimed to identify novel potential target sites on the surface of the spike protein. To do so, they developed molecular dynamics simulations that capture the complete structure of the spike protein and its motions in a realistic environment.

 

These simulations show that glycans on the spike protein act as a dynamic shield that helps the virus evade the human immune system. Similar to car windshield wipers, the glycans cover nearly the entire spike surface by flopping back and forth, even though their coverage is minimal at any given instant.

 

By combining the dynamic spike protein simulations with bioinformatic analysis, the researchers identified spots on the surface of the spike proteins that are least protected...

 

 

More information: Sikora M, von Bülow S, Blanc FEC, Gecht M, Covino R, Hummer G (2021) Computational epitope map of SARS-CoV-2 spike protein. PLoS Comput Biol 17(4): e1008790. doi.org/10.1371/journal.pcbi.1008790

 

more

https://phys.org/news/2021-04-dynamic-sars-cov-spike-protein-reveals.html