The Age of Robot Farmers

Picking strawberries takes speed, stamina, and skill. Can a robot do it?


By John Seabrook, The New Yorker

Apr 8, 2019


This article appears in the print edition of the April 15, 2019, issue, with the headline “Machine Hands.”


It was a hot February morning at Wish Farms, a large strawberry-growing operation outside Plant City, Florida. Gary Wishnatzki, the proprietor, met me at one of the farm offices. In the high season, Wish Farms picks, chills, and ships some twenty million berries—all handpicked by a seasonal workforce of six hundred and fifty farm laborers.


Wishnatzki is a genial sixty-three-year-old third-generation berry man, who wears a white goatee and speaks softly, with a Southern drawl. His grandfather Harris Wishnatzki was a penniless Russian immigrant who started out peddling fruits and vegetables from a pushcart in New York’s Washington Street Market in 1904. He and a partner established a wholesale business in 1922, and Harris moved to Plant City in 1929, to run it. Gary Wishnatzki is the first in his family to own a farm.


He explained that the entire farm has to be picked every three days—or a third every day. Growers want a steady flow of berries to reach the market throughout the season, rather than having a glut of berries arrive all at once, which would cause the price to fall. Up until recently, Wishnatzki has relied on cheap labor to get his berries picked—a fundamental of American agriculture, along with abundant land and water.


In recent years, though, seasonal labor has become much more scarce, and more expensive—making it difficult for growers of apples, citrus, berries, lettuce, melons, and other handpicked produce-aisle items to harvest their crops. Years of attempts to crack down on illegal immigration, both at the state and the federal level, partly explain these chronic shortages. In 2011, for example, Georgia enacted a strict immigration law that targeted undocumented workers and their employers. Later that year, the state reportedly lost eleven thousand crop workers. To fill the gap, officials established a program whereby nonviolent offenders nearing the end of their prison terms could do paid farmwork. The program had few takers, and many prisoners and probationers who did try it walked off the job, because the work was so hard. Georgia farmers lost more than a hundred and twenty million dollars.


“It’s very expensive,” Wishnatzki said of the process of getting visas for temporary agricultural workers—they are issued under a program called H-2A —because of all the red tape and the cost of housing. (“Expensive” is a relative term: H-2A workers are still among the lowest paid in the country.) “But at least it guarantees that we have workers, so we’re able to plant a crop,” he continued.


When Wishnatzki started out in the business, in the mid-seventies, a box of strawberries selling in a supermarket in the Northeast in February cost four times as much as it does now. For the average consumer, “berries in winter were a luxury item back then,” Wishnatzki said. “And that’s where we’re headed again, unless we can solve our labor problems.” He added, “I testified before Congress before last year’s Farm Bill, and I told them, ‘If we don’t solve this with automation, we’re in huge trouble.’ ”


The solution, Wishnatzki believes, is to make a robot that can pick strawberries. He and a business partner, Bob Pitzer, have been developing one for the past six years. With the latest iteration of their invention—known around the farm as Berry 5.1—they are getting close.



To understand the kind of work that Wishnatzki and his colleagues are trying to automate, I spent some time watching his workers pick strawberries. Crews of strawberry pickers, most of them Mexican-born, had arrived at first light, fanning out over Wish Farms’ six hundred acres of strawberry fields, one of the largest contiguous patches in North America.


Picking a strawberry properly, and doing it fast enough to earn a living wage, requires speed, dexterity, and stamina...



At the beginning of the twentieth century, about a third of the U.S. population lived on farms; today, less than one per cent does. Mechanization brought tractors and combine harvesters, which were initially used for grains, such as wheat, rye, oats, and barley. They automated the manual labor formerly done by small armies of threshers and bundlers. Mechanical harvesters made industrial farming possible, and led to the consolidation of small family acreages into the megafarms that dominate U.S. agriculture today. “It was only those growers who first had access to the capital to buy the technology who could prevail,” Erik Nicholson, the national vice-president of the United Farm Workers, told me. “Those who didn’t could not compete and were run out of business, and their farms were put up for sale, and you had a dramatic consolidation of land in the Midwest.”


But mechanization has had a much greater impact on corn, wheat, soybeans, rice, and cotton—the five crops that make up the vast majority of the planted acreage in the U.S.—than on specialty crops, which include the bulk of the fresh produce we buy in the supermarket. Partly as a result, specialty-crop farms have remained smaller, on average, than the huge farms that grow most of the grain and corn. Many specialty crops require delicate handling or selective harvesting—choosing only the ripe fruits and vegetables—and the big machines are often too clumsy and unintelligent for that kind of work. Large numbers of human laborers are still necessary at harvest time, as has been the case since the dawn of agriculture. The farmer still needs hands, literally, to do the picking.


However, the number of undocumented Mexican workers crossing the border began declining nearly two decades ago, driven as much by demographics and economics as by politics. During the seventies and eighties, workers came across the border in large numbers, because of a rapidly growing population, a lack of jobs, and a bad economy triggered by the devaluation of the peso after an oil boom. “People were lining up to work,” Wishnatzki told me. Immigration accelerated in the nineties and peaked in 2000. By then, the birth rate in Mexico had dropped from 6.8 per cent in 1970 to less than three per cent; in 2016, it was 2.2 per cent, not much higher than the U.S. rate of 1.8 per cent. According to the Pew Research Center, between 2009 and 2014 there were more Mexicans leaving the U.S. and going back to Mexico than there were coming in. And that was before Trump.


Migrants coming more recently from Central America, many of them also looking for better jobs and opportunities for their families, and often fleeing violence in their home countries, haven’t traditionally entered the crop-farm workforce in enough numbers to compensate for the loss of those Mexican workers—they’ve instead found jobs at meatpacking plants and in the service industries.


The average age of domestic farmworkers—the roughly one million seasonal workers who were legalized as part of the 1986 Immigration and Control Act, as well as those who are undocumented—has increased from thirty-three, in 2000 and 2001, to thirty-eight, in 2015 and 2016. “Strawberry picking is a young person’s game,” Wishnatzki observed of the backbreaking nature of the job. “The aging workforce that we have here, the domestic people, they’re getting less and less productive.” And these farmworkers don’t want their children to do the work, any more than Wishnatzki’s grandfather wanted his children to push a peddler’s cart. “It’s a first-generation thing,” he said.


“Right now, the only way we are getting the crops picked is we are getting workers here on H-2A visas,” Wishnatzki said. H-2A workers are recruited in Mexico by independent labor contractors and granted limited-stay work visas. The program was introduced in the nineteen-eighties and has become a major source of seasonal farm labor in the U.S. Sixty per cent of Wish Farms’ pickers this year are H-2A workers.



Wishnatzki’s is only one of a number of startups that are trying to build a strawberry-picking robot...



So far, Berry 5.1 has cost nearly ten million dollars to develop; Wishnatzki raised most of the money from investors, many of whom were other strawberry growers, including the industry giant Driscoll... 



The farms most amenable to automation are indoor ones—both greenhouses and the newer vertical farms that have begun to appear in urban areas in recent years...



Berry 5.1 was sitting outside the farm office. It was unexpectedly huge. I had imagined that a smart harvester wouldn’t need bulk: this was a twenty-five-thousand-pound, thirty-foot-long robotic berry-picking behemoth... 



If the future of fruit-and-vegetable farming is automation, farmers will not only need the machines, and the funds to afford them, they will also require a new class of skilled farm workers who can debug the harvesters when something goes wrong...