Welcome to the Golden Age of DIY Farm Invention


by Chris Bennett, FarmJournal AgTech 



The mavericks of DIY innovation are blazing a trail through the heart of agriculture. Yesterday’s technological hopes are today’s reality on many operations, evidenced by a growing number of farmers involved in automation and open sourcing. If the maxim of “money talks and theory walks” holds true as a measuring stick, then the increase of farmers transferring workbench prototypes to field activity is a plain indicator of success.


Geography once ensured the isolation of DIY innovation, as each farmer tinkered on his own island, but the physical barrier of distance has been spanned by the wireless wonder of a cellular signal. With smartphones in pockets and tablets in cabs, farm inventors from Mississippi to Manitoba are thriving.


Brian Tischler


“Some guys will continue to pay $500,000-plus for a new tractor and all the extras, and others will buy an older model and dress up it with open source and DIY,” Brian Tischler says. “That’s farming.”


Located roughly two hours east of Edmonton, Alberta, Tischler is driven by the possibilities of open source technology, and far removed from the comforts of armchair innovation. Growing field peas, fava beans, wheat, canola, barley, oats, flax, and sunflowers on 2,500 acres outside the tiny town of Mannville, Tischler is boosting open source access with AgOPenGPS—a free software program aimed at precision mapping and tractor automation which has gained global traction. 


Tischler began the project in 2016, initially creating a basic application on a Windows tablet that took GPS data and drew a continuous line showing where he had seeded last. “Agriculture is so proprietary and locked down solid. I thought it was time to go open source.”


He placed the entire project on GitHub for free download, and posted it on The Combine Forum. “I said, ‘Here is a link and it does mapping.’” In short time, Tischler added section control and autonomous tractor control to the program. “There are lots of commercial systems that do all of this, but they are expensive. This one is free.”


Tischler doesn’t shy from blunt assessment or criticism: “I want to give back to agriculture because I’ve been very fortunate in so many ways, but I don’t think the future of farming technology is based on open source; it only has a role. Manufacturers continue to make software that runs with ease—the push of a button that does 800 things in the background. Everyone in ag has to make money.”


The potential for DIY-related savings and efficiency is exploding, partially due to a radical decrease in hardware costs, Tischler explains. The pièce de résistance that has fueled tremendous innovation, and is almost ubiquitous among DIY farming advocates, is the Arduino, a simple, open-source microcontroller originally designed in Italy for high school learning. Essentially, an Arduino is a highly durable microcontroller on a board enabling basic understanding of how a computer works. “They took a $3 computer and built software. Now the silly little thing is used on an inestimable amount of projects around the world, including farming.”


Tischler used an Arduino to connect with a driver which powers a tilt meter and an electric motor turning his John Deere 4560’s steering wheel. “It’s $3 for an Arduino, $3 for a tilt meter, and $25 for the motor driver. You now have autosteer. People are absolutely getting bolder with DIY projects by the month. DIY guys have never had this many affordable parts and pieces available, and it’s happening everywhere.”


Kyler Laird


Agriculture is at technological tipping point, according to Kyler Laird, an Indiana farmer growing 1,700 acres (Lairdscape) of no till corn and soybeans in Jasper County, halfway between Chicago and Indianapolis. At the vanguard of ag automation, Laird has developed a series of DIY robots, starting with a John Deere 420 lawn tractor and continuing up the driverless ladder—Massey Ferguson 2745, Challenger MT765, and John Deere 6330. In 2017, Laird planted his corn fields (535 acres) with a driverless tractor. In 2019, under the banner of his fledgling company, Sabanto, and alongside business partner Craig Rupp, co-founder of 640 Labs, Laird aims to plant 10,000 acres of soybeans from Texas to Canada in a planting demonstration of equipment utilization and robot efficiency.


See here for a collection of Laird’s tractobot videos...


Laird’s “tipping point” analogy rests heavily on the marked decrease in hardware prices over the past decade. “I see more and more DIY. We’ve got access to cheap RTK and GPS, and that hasn’t been the case before, and now it’s a big difference. Anybody can buy a Raspberry Pi for $30 and put together a system. The tech has been there for 30 years, but now it’s off-the-shelf easy items. Almost anyone with a technical bent can do it or quickly learn how to do it.”


Laird is frequently contacted by producers trying to save costs and steer away from subscriptions. “Often, guys don’t want to spend $4,000 on a guidance system and they’re frustrated by the expense of subscriptions. They want something that’s cheap, but works and is functional. Like never before, that is now possible. Then there are guys who aren’t necessarily as concerned about price, but really want more control, and that’s exactly how I personally got involved with automation: I wanted control.”


The open source collaboration of farm technology is set to jump, Laird contends. “You’re going to see more projects like AgOpenGPS. Someone is going to come in and start banging out better hardware for these type of projects, and it’s going to make things very accessible for a lot of people.”


Laird cites the success of Purdue University’s open source ISOBlue, comparing its functionality at a level similar to FieldView. A significant open source issue is hardware access and setup, he explains: “One guy has to make a guide sheet and explain what hardware is needed, where to get it, what software to download, how to build it, and go. Once one person does it, it’s over. For some people, there’s no reason to buy systems of any kind when they can build for much less.”


Matt Reimer ... 


Perry Casson ... 


Jared Schott ... 


Jim Poyzer ... 


Learn Code, My Child? ... 


The Big Tomorrow ... 


more, including photos, links